

EVEN SEMESTER EXAMINATION, 2023 – 24
2nd yr B.Tech. –Computer Science&Engineering
FORMAL LANGUAGES & AUTOMATA THEORY

Duration: 3:00 hrs**Max Marks: 100**

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1.	<p>Answer any four parts of the following.</p> <p>a) Give DFAs that recognize the following languages: $\{w \in \{0,1\}^* \mid w \text{ contains } 110 \text{ as a substring}\}$</p> <p>b) Convert the following Deterministic Finite Automata into Regular Expression.</p> <p>c) Give context-free grammars having two variables generating the following languages over the alphabet {a,b}</p> <p>$L = \text{“The set of strings with more a’s than b’s”}$</p> <p>d) State whether the statement is true or false and Briefly give reason in support of your answer. “The class of context-free languages is closed under intersection”.</p> <p>e) Discuss four closure properties of Regular Languages and prove that the Regular Languages are closed under them.</p> <p>f) What is Pumping Lemma for regular Language.</p>	5x4=20
Q 2.	<p>Answer any four parts of the following.</p> <p>(a) Put the following grammar into Chomsky Normal Form.</p> $S \rightarrow T \mid T a S$ $T \rightarrow a T b \mid b T a \mid T T \mid \epsilon$ <p>b) Give DFAs that recognize the following languages: $\{w \in \{0,1\}^* \mid w \text{ contains at least two 0’s}\}$</p> <p>c) State whether the statement is true or false and Briefly give reason in support of your answer: “ A context free grammar G and w be a string in $L(G)$, then the number of leaves in a parse tree of w with respect to G can be more than the length of w”.</p>	5x4=20

	<p>d) Construct a Deterministic finite automaton to accept the set L of all strings over $\{0,1\}$ ending with 010.</p> <p>e) Differentiate between Non deterministic finite automata (NFA) and deterministic finite automata(DFA).</p> <p>f) What are regular expressions? Discuss in brief operators of regular expression and their precedence</p>	
Q 3.	<p>Answer any two parts of the following.</p> <p>a) Design a non-deterministic pushdown automata M that recognizes the language $L = \{ ww^R \mid w \in \{0,1\}^*\}$, where w^R means written backwards. Give the informal description of the PDA.</p> <p>b) Design a Turing machine with no more than three states that accepts the language $L(a(a+b)^*)$. Assume that $\Sigma = \{a,b\}$. Is it possible to do this with a two state machine?</p> <p>c) Elaborate Chomsky and Greibach normal forms.</p>	10x2= 20
Q 4.	<p>Answer any two parts of the following.</p> <p>a) Design a Turing machine that copies strings of 1's. More precisely, find a machine that performs the computation. Give the pseudocode of the design. $q_0 w \dashrightarrow^* q_f w w$</p> <p>b) Complete the following state transition diagram of Push Down Automata M that recognizes $L = \{ a^i b^j c^k \mid i, j, k \geq 0 \text{ and } i=j \text{ or } i=k \}$</p> <p>c) What are Recursive languages? Discuss the Properties of recursive languages.</p>	10x2= 20
Q 5.	<p>Answer any two parts of the following.</p> <p>a) Find a grammar having single variable that generates the following language: $L = \{ a^n b^{n+1} \mid n \geq 0 \}$ Give the complete specification of the grammar. Construct parse tree for any two strings $w \in L$ and $w =5$. Show whether the grammar is ambiguous?</p> <p>b) Discuss Undecidable Problems about Turing Machines.</p> <p>c) Design a Turing Machine to recognize all the strings consisting of an even number of 1's. Give the idea of construction and transition table for the Turing machine.</p>	10x2= 20